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Exact Moments of Curvature Measures in the
Boolean Model
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Curvature measures are important for the characterization of spatial structures
since many physical phenomena depend essentially on the geometry of spatial
configurations. Curvature-weighted correlation functions can be defined and
calculated explicitly within the Boolean model. This standard model in statisti-
cal physics generates random geometries by overlapping grains (spheres, sticks)
each with arbitrary location and orientation. A general decomposition relation
for characteristic functions of submanifolds based on Chern's differential kinematic
formula is used to obtain exact expressions for mean values and second order
moments of curvature integrals, i.e., of Minkowski functionals. An exact relation
for the canonical and grand-canonical second order moments of the morpholog-
ical Minkowski measures can be derived based only on thermodynamic argu-
ments. The results are applied on the morphological thermodynamics of complex
fluids where specific heats are expressed in terms of curvature moments.

KEY WORDS: Random sets; integral geometry; Minkowski functionals;
Euler characteristic; Boolean model.

1. INTRODUCTION: SPATIAL PATTERNS IN
STATISTICAL PHYSICS

The spatial structure of systems becomes more and more important in
statistical physics. For instance, transport properties in porous media
depend on the shape and statistical distribution of the pores shown in
Fig. 1.(1, 2) If the volume fraction of pores (black) increases above a thresh-
old, an infinite cluster of connected pores may span through the whole
system which enables the transport of fluids. The knowledge of the depen-
dence of this percolation threshold on the shape and distribution of the

1343

0022-4715�01�0300-1343�19.50�0 � 2001 Plenum Publishing Corporation

1 Fachbereich Physik, Bergische Universita� t, D-42097 Wuppertal, Federal Republic of
Germany; e-mail: mecke�theorie.physik.uni-wuppertal.de



File: 822J 294202 . By:XX . Date:20:12:00 . Time:09:40 LOP8M. V8.B. Page 01:01
Codes: 2548 Signs: 2103 . Length: 44 pic 2 pts, 186 mm

Fig. 1. (a) Porous media (left) can be described by the Boolean model, i.e., by overlapping
grains such as spheres and discs distributed in space. (b) Inhomogeneous domains of ther-
modynamic stable phases of complex fluids (right) may also be described by overlapping
grains. Such configurations resemble, for instance, the structure of microemulsions. The
stochastic geometry of the black domains can be described by mean values and second order
moments of curvature integrals, so-called Minkowski functionals, i.e., of area, boundary
length, and Euler characteristic of the black region.

grains is essential for many applications in physics. It was argued that close
to the threshold the averaged Gaussian curvature vanishes which may
provide an estimate for the percolation density.(3) In order to improve this
estimate it may be relevant to consider second order moments of curvatures
in addition to averages.

Also the interest in microemulsions and colloidal suspensions rests
primarily on the complex spatial structures of mesophases, e.g., the bicon-
tinuous phases on a mesoscopic scale of an emulsion of oil and water stabi-
lized by amphiphiles.(4) The spatial structure of complex fluids can be
resembled by configurations of overlapping spheres shown in Fig. 1. The
free energy of the homogeneous oil phase in a microemulsion may be then
given by a bulk term (volume energy), a surface term (surface tension), and
curvature terms (bending energies) of the white region, for instance. Thus,
the spatial structure of the phases, i.e., the morphology of the white regions
determines the configurational energy which determines itself the spatial
structure due to the Boltzmann factor in the partition function of a canoni-
cal ensemble.(5�7) In order to perform high-temperature expansions of such
a morphological model for complex fluids and to derive expressions for
specific heats, for instance, it is mandatory to know mean values and
second order moments of volume, surface area, and curvatures of overlap-
ping spheres. Moreover, in order to understand scattering experiments with
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neutrons or X-rays, one needs to calculate two-point structure functions of
homogeneous domains which is a necessary first step in determining second
order moments of curvatures.

Further examples where second order moments of curvatures play an
important role are the modeling and reconstructing of disordered micro-
structures such as soils and porous media(8) and the statistical analysis of
point patterns:(9) in order to apply curvature measures to point patterns
each point is decorated by a d-dimensional sphere. The scale-dependent
morphological features of this coverage may then be explored by varying
the radius of the spheres. Calculating the curvatures for a given covering a
quantitative characterization is obtained for the scale-dependent morphol-
ogy of the underlying spatial point process, which generalizes the spherical
contact probability��a standard technique in spatial statistics.(10) Second
order moments of curvatures are needed to estimate the robustness of the
method, i.e., to estimate the errors and reliability of model assumptions.

The spatial structures shown in Fig. 1 are configurations of the Boolean
model, a standard model of stochastic geometry.(10) This stochastic model
generates spatial structures by overlapping grains K of arbitrary shape and
size. For convenience, spheres or discs of fixed radius are often used.
Although a number of lattice models have been defined and extensive com-
puter simulations have been performed for percolation phenomena and the
study of complex fluids, not many continuum models have been studied.
Here, we consider for the first time the distribution of curvatures in this
continuum standard model.

In order to describe spatial structures one has to define suitable
morphological measures. Integral geometry furnishes a whole family of
descriptors, known as Minkowski functionals M& , which are related to
curvature integrals and do not only characterize connectivity (topology)
but also content and shape (geometry) of patterns.(9, 11, 12) In the three-
dimensional Euclidean space the family of Minkowski functionals M& con-
sists of the volume V=M0 , the surface area S=8M1 of the pattern, its
integral mean curvature H=2?2M2 and integral of Gaussian curvature,
i.e., the Euler characteristic /=(4?�3) M3 .(12) Besides the definition of
morphological measures integral geometry provide theorems, formulae,
and elegant calculus in order to derive exact results, in particular, for the
Boolean model.(9, 11, 12)

Although analytic expressions for mean values of Minkowski func-
tionals are known for the Boolean model since many years, (3) second order
moments have never been exactly calculated except for special cases.(5) But
variances of Minkowski functionals are essential for the understanding of
the statistical physics of spatial patterns, i.e., of fluctuations and structure
functions in the Boolean model, for high temperature expansions of the
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partition sum in a morphological model for complex fluids, and for deter-
mining percolation thresholds in porous media. In order to derive exact
expressions for second order moments, the global functional M& is decom-
posed into a sum of local functionals M *

& . The latter can be expressed as
an integral over a characteristic function /*(x), x # Rd, so that averages of
products S*1*2(x1 , x2)t(/*1(x1) /*2(x2)) can be used to calculate averages
of products of Minkowski functionals m&+t(M&M+).

In Section 2 the basic facts from integral geometry are introduced, in
particular, characteristic functions for curvatures and local Minkowski
functionals. In Section 3 curvature-weighted structure functions are
calculated for the Boolean model which are used in Section 4 to derive
explicit expressions for second order moments. The difference of canonical
and grand-canonical ensembles are discussed and illustrated for sticks and
discs. As a first application of the main results a morphological thermo-
dynamic model based on curvature integrals is introduced in the last
Section 5 and thermodynamical quantities such as specific heats are related
to mean values and second order moments of curvatures in the Boolean
model.

2. INTEGRAL GEOMETRY

Let us first recall in this section the main results and theorems of
integral geometry, the definition of Minkowski functionals M& (Section 2.1)
and the Boolean model (Section 2.2). The definition of characteristic func-
tions /*(x) in Section 2.3 and of local Minkowski functionals M *

& in Sec-
tion 2.4 extends the standard reign of integral geometry and can be used
to derive explicit expression for structure functions S*1*2 (Section 3) and
second order moments m&+ (Section 4) of Minkowski functionals in the
Boolean model.

2.1. Minkowski Functionals

Minkowski functionals (or intrinsic volumes, quermass integrals,
curvature integrals) may be introduced as integrals of curvatures using
differential geometry of smooth surfaces. Let A be a compact domain in
Rd with regular boundary �A # C2 and d&1 principal radii of curvature Ri

(i=1,..., d&1). The functionals W&(A), with &�1, can be defined by sur-
face integrals(11)

W&+1(A)=
1

(&+1)( d
&+1) |

�A
S& \ 1

R1

,...,
1

Rd&1+ dS (1)
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where S& denotes the & th elementary symmetric function and dS the
(d&1)-dimensional surface element. In three dimensions one obtains W1=
1
3 � dS, W2= 1

3 � H dS, and W3= 1
3 � G dS with the Gaussian G=1�R1 R2

and the mean curvature H= 1
2 ((1�R1)+(1�R2)). Although the Minkowski

functionals are introduced as curvature integrals, they are well-defined at
singular edges occurring, for instance, at the intersection of two grains
clearly visible in Fig. 1. It is convenient to normalize the functionals

M&(A)=
|d&&

|&|d
W&(A), &=0,..., d (2)

using the volume |d of a d-dimensional unit sphere |d=?d�2�1 (1+d�2),
namely |1=2, |2=?, and |3=4?�3. In three dimensions the family of
Minkowski functionals consists of the volume V=M0 , the surface area
S=8M1 of the coverage, its integral mean curvature H=2?2M2 , and the
Euler characteristic /=(4?�3) M3 .

The most important property of Minkowski functionals is additivity,
i.e., the functional of the union A _ B of two domains A and B is the sum
of the functional of the single domains subtracted by the intersection

M&(A _ B)=M&(A)+M&(B)&M&(A & B) (3)

This relation generalizes the common rule for the addition of the volume
of two domains to the case of a general morphological measure, i.e., the
measure of the double-counted intersection has to be subtracted.

A remarkable theorem is the ``completeness'' of the Minkowski func-
tionals proven 1957 by H. Hadwiger. This characterization theorem asserts
that any additive, motion-invariant and conditionally continuous func-
tional M is a linear combination of the d+1 Minkowski functionals M& ,

M(A)= :
d

&=0

c&M&(A) (4)

with real coefficients c& independent of A.(13) Motion-invariance of the
functional means that the functional M does not dependent on the location
and orientation of the grain A. Since quite often the assumption of a homo-
geneous and isotropic system is made in physics, motion-invariance is not
a very restrictive constraint on the functional. An important consequence
of the additivity and the characterization theorem (4) is the possibility
to calculate analytically certain integrals of Minkowski functionals. For
instance, the kinematic fundamental formula(11)

|
G

M&(A & gB) dg= :
&

+=0 \
&
++ M&&+(B) M+(A) (5)
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describe the factorization of the Minkowski functionals of the intersection
A & B of two grains A and B if one integrates over the motions g=(x, r),
i.e., translations x and rotations r of B. The integration � dg=� dx_� dr is
the direct product of the integrations over all translations and orientations.

2.2. Boolean Model of Overlapping Grains

To be as rigorous as possible and desirable let us recapitulate defini-
tions and notations of the Boolean model. We consider N convex grains Ki ,
i=1,..., N and assume that their Minkowski functionals m&(K i ) are finite.
At a given point x # Ai of each grain (the center) we fix a d-frame to deter-
mine the orientation ri of the grain Ki . These so marked penetrable grains
are placed independently at N random sites in a d-dimensional cube 0 with
random isotropic orientation of their d-frames. To avoid edge effects we use
periodic boundary conditions on �0. Thus, a random configuration of
grains gives rise to a set

AN= .
N

i=0

giKi (6)

Our aim is to compute the mean values and second order moments of
M(AN), where the configurational average is done with the product density
element

d+(g1 ,..., gN)=
1

|0|N `
N

i=1

dgi (7)

� dgi=|0|=vol(0). The integration over translations is restricted to 0,
i.e., the translated grains should have a nonempty intersection with 0.

The kinematic formula (5) is extremely useful to calculate mean values
of the additive Minkowski functionals for random distributions of grains.
Following the method in ref. 3 one obtains for the mean values of the
Minkowski measures per unit volume the explicit expression m0(\)=
1&e&\m0(K ) and for &�1

m&(\)=&
�&

�t& exp {&\ :
d

:=0

m:(K )
t:

:!= } t=0

=&e&\m0(K ) :
&

+=1

(&\) +

+!
I� +

&(K ) (8)
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with coefficients I� +
& which do not depend on the density \ but solely on the

shape of the grains Ki . In particular, one finds m1(\)=\m1(K ) e&\m0(K ),
m2(\)=(\m2(K )&m1(K )2 \2) e&\m0(K ), and m3(\)=(\m3(K )&3m1(K )
m2(K ) \2+m1(K )3 \3) e&\m0(K ) where m&(K ) are the Minkowski func-
tionals for an arbitrary single shape K.

Remark. Since the squared functionals M 2
&(AN) are not additive the

kinematic formula (5) does not help to calculate second order moments.
Therefore, local functionals and characteristic structure functions has to be
defined first (Sections 2.3�2.4) in order to decompose the squared func-
tionals into local contributions for which averages can be calculated within
the Boolean model (Section 4).

2.3. Characteristic Functions

In Section 2.1 Minkowski functionals are introduced as global measures
M&(AN) of configurations AN in order to describe the morphology of the
stochastic spatial structures emerging in the Boolean grain model. It was
emphasized that these measures can be written as surface integrals of cur-
vatures. An important generalization of the concept of morphological
characterization is the definition of local curvature measures.

In the Boolean grain model the surface �AN of a configuration AN=
�N

i=1 Ki of N overlapping grains Ki can be decomposed into d&&-dimen-
sional parts resulting from the intersection of surfaces �Ki of & different
single grains Ki . The d&&-dimensional surface is defined by

A(&) :=�&A={x # �A } _Ki with x # ,
&

i=1

�Ki= (9)

and A(0) :=�0A :=A. The set A(&) is closed with M*(A(&))=0 for *<&.
Analogous to the characteristic function

/0(A, x)=/(A & x)={1
0

x # A

x � A
(10)

i.e., to the Euler characteristic /=|dMd which indicates whether the point
x # 0 belongs to A, one may define local characteristic functions of sub-
manifolds A(&) by

/&(A, x)=|
y # �&A

dS(&)y $(y&x) (11)
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and /0(A, x) :=/(A & x), where dS(&)y denotes the infinitesimal volume
element of �&A at the point y # A(&). The function /&(A, x) (&>0) is
strictly speaking a distribution defined as functional which maps functions
f (x) to R. They are zero for points x � A(&) whereas the integral over Rd

M &
0(A)=|

Rd
/&(A, x) dx (12)

yields the (d&&)-dimensional volume M &
0 of A(&), for example, the d&1-

dimensional surface area M 1
0(A)=d W1(A). In addition to the not

covered surface area of the grains (&=1) one obtains in three dimensions
the boundary length M 2

0(A) of the intersection of two grains (&=2) and
the number M 3

0(A) of triple intersections of three grains (&=3). Because
of M &

0(A)=M &
0(�A) one obtains for the union of & grains (&{0) the relations

/& \ .
&

i=1

K i , x+=/& \� .
&

i=1

K i , x+=/& \ .
&

i=1

�Ki , x+
=/& \ ,

&

i=1

�K i , x+=/& \ ,
&

i=1

K i , x+
(13)

M &
0 \ .

&

i=1

Ki+=M &
0 \� .

&

i=1

Ki+=M &
0 \ .

&

i=1

�Ki +
=M &

0 \ ,
&

i=1

�Ki+=M &
0 \ ,

&

i=1

Ki+
Instead of the decomposition

/(A & x)=1& `
N

i=1

(1&/(Ki & x)) (14)

of the characteristic function /(A & x) one obtains for &>0 the decomposi-
tion of /&(A, x) into characteristic functions of single grains Ki

/&(A, x)= :
[C &

N]

/& \ .
j # C&

N
K j , x+ `

j � C&
N

(1&/(Kj & x)) (15)

where C N
& denotes a combination of & numbers out of N. The decomposi-

tion (15) of the characteristic functions separates the combinatorial features
of N overlapping grains A=�N

i=1 K i from the local geometric measure /&.
An important property of /& is the symmetry relation

/&(Ky , x)=/&(K� x , y) (16)
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where K� x=[y # Rd | &(y&x) # Kx] denotes the inverted grain where x is
the center of mass of K. In the decompositions (14) and (15) the multiplica-
tion rule

/(K & x) } /(K$ & x)=/(K & K$ & x) (17)

of two characteristic functions at the same point x has been used.
Analogously, one finds the general relation

2 (d )
&+ (rx) /& \ ,

&

i=1

K i , x+ / + \ ,
+

j=1

Kj , x+=/&++ \ ,
&++

i=1

Ki , x+ (18)

for &, +{0 and &++�d. It should be noted that the product vanishes for
&++�d. The factor 2(d )

&+ (rx) does not depend on the position x at the
intersection of the boundaries �Ki but on the relative orientation rx of
the grains K=�&

i=1 Ki and K$=�+
j=1 Kj at x. It is given as functional

determinant in the differential kinematic formula(14, 15) (compare Eq. (15.9)
in ref. 11)

dS(&++)(K$ & K ) 7 dK=2 (d )
&+ (K[x]) dK[x] 7 dS(+)(K$) 7 dS(&)(K ) (19)

which describes the decomposition of the kinematic density dK of the
group of motions, i.e., translations and orientations of the (d&&)-dimen-
sional grain K with respect to the fixed (d&+)-dimensional grain K$. Here,
dK[x] is the kinematic density of the group of special rotations of K about
x which is isomorphic to SO(d ). The integration measure dS(&) denotes the
(d&&)-dimensional volume element of K which has been used already in
Eq. (11) and Eq. (1) for &=1. Details of the derivation of the factor
2(d )

&+ (K[x]) can be found in [11, Chap. 15]. Let us consider the (r+q&d )-
dimensional intersection S r+q&d=M r & N q of a r-dimensional manifold
M r and a fixed q-dimensional manifold N q. At each point x # S r+q&d

orthonormal vectors ei , i=1,..., r+q&d can be found which span the
tangent plane of S r+q&d at x. Let ei , i=r+q&d,..., r be orthonormal
vectors which are perpendicular to S r+q&d but tangent to M r. Accordingly,
let bi , i=1,..., d&r be orthonormal vectors which are perpendicular to
S r+q&d but tangent to N q. Obviously bi do not be necessarily perpendic-
ular to M r so that the (d&r)_(d&r) determinant (i, j=1,..., d&r)

2(d )
rq :=|(b i } er+ j )| (20)

is not equal unity due to non-rectangular angles between tangent vectors
bi at N q and er+i at M r. Thus, the decomposition Eq. (18) of the charac-
teristic functions /&(x) of (d&&)-dimensional submanifolds of A=�i Ki
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(see Eq. (11)) requires a volume element defined by the tangent vectors, i.e.,
normals ni of Ki at x.

Example 2.1. In two dimensions, for instance, the determinant

2 (2)
11 (,)=|n1 } n2 |= } cos \?

2
&,+ }=sin ,(n1 n2) (21)

at an intersection point x # �K1 & �K2 of the two one-dimensional manifolds
�Ki is given by the angle ,(n1n2) (0�,�?) between the two normal vec-
tors ni at Ki , respectively. Generally, one finds for two (d&1)-dimensional
manifolds �Ki in d dimensions the factor 2 (d )

11 =|sin(,)| where , denotes
the angle between the two normal vectors of �Ki at x # �K1 & �K2 .

Example 2.2. Accordingly, one finds in three dimensions for the
intersection of three grain boundaries �Ki with N 1=�K1 & �K2 and M2=
�K3 the determinant

2(3)
21 =|b1 } e3 |=|cos(,((n1_n2) n3))|=

|(n1_n2) n3)|
|sin ,(n1n2)|

(22)

where the tangent b1=n1_n2 �|n1_n2 | of N 1 at x is given by the normal
vectors ni of Ki at x and ,(eb) denotes the angle between two vectors e and b,
in particular, between e3=n3 and b1 . It should be noted that 2 (3)

21 (n1 , n2 ; n3)
is not symmetric in the normals ni since the position of K1 and K2 is fixed
in Eq. (22) whereas K3 denotes a moving grain.

2.4. Local Minkowski Functionals

In Section 2.1 curvature integrals are defined over the total surface �A

of a configuration A. Restricting the range of integration one may define
local curvature measures(16�18)

W&(A, B)=
1

&( d
& ) |

x # B & �A
S&&1(x) dS (23)

by integrating the curvature functions S& , i.e., the symmetric combination
of the local curvatures R&1

i only over a part B & �A/�A of the surface �A.
These ``local Minkowski functionals'' are continuous, additive, homogeneous
of order d&&, and motion invariant, W&(gA, gB)=W&(A, B), if B is moved
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according to A. Choosing the special case of a point B=x # �A on the surface
one obtains the & th elementary symmetric function of the curvatures at x,

W&(A, x)=
1

&( d
& )

S&&1(x) (24)

if the boundary �A is smooth. At singular points x/�n
i=1 Ki where, for

instance, boundaries of convex bodies intersect the local curvature
W&(A, x) is given by the derivative of the parallel volume(13)

W& \ .
n

i=1

Ki , x+=(&1)n+1 (d&&)!
d ! \ �

�=+
&

V(Bd
= (x)) } ==0

(25)

where Bd
= (x) denotes the set of points with distance less than = to x and V

its volume.

Example 2.3. One finds in d dimensions for spheres Bd
R(xi ) of

radius R and center xi at the intersection S (2)=�Bd
R(x1) & �Bd

R(x2)
( |x1&x2 |<2R) the local Minkowski functionals

W2(Bd
R(x1) & Bd

R(x2), S (2))

=
2
d

|d&1 \R2&
|x1&x2 |2

4 +
(d&2)�2

arc sin \ |x1&x2 |
2R + (26)

and, particularly, for d=3 the local Euler characteristic W3(Bd
R(x1) &

Bd
R(x2), S (2))=|3 |x1&x2 |�(2R).

Example 2.4. At the intersection S (3)=�Bd
R(x1) & �Bd

R(x2) &
�Bd

R(x3) of three spheres in three dimensions one obtains the local Euler
characteristic

W3(Bd
R(x1 & Bd

R(x2 & Bd
R(x3), S (3))= 2

32(:1 , :2 , :3) (27)

with |xi&xj |<2R (i{ j ) and the spherical excess 2(:1 , :2 , :3) given by
l'Huiliersche formula

tan2 2
4

=tan
:1+:2+:3

4
tan

:1+:2&:3

4
tan

:1&:2+:3

4

_tan
&:1+:2+:3

4
(28)

The factor |2|�3 denotes the Gaussian curvature at x # S (3) where boun-
daries of three spheres intersect. It equals the area of a spherical triangle
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with edges :i=2 arc sin( |yj&yk |�2R) (i{ j{k) where y i=x i&x denotes
the distance of the intersection point x to the centers xi of the spheres.

Applying the normalization (2) and using the characteristic functions
/& of the intersection sets A(&) of grains given by Eq. (11) one can define
analogously to the volume integrals M &

0(A) the local Minkowski func-
tionals (&�*�1)

M*
&(A)=| M&(A, x) /*(A, x) dx (29)

of a configuration A of the Boolean model (see Eq. (6)). The decomposition

M&(A)= :
&

*=1

M *
&(A) (30)

of the global Minkowski functional into contributions located on the
(d&*)-dimensional intersection A(*) of * grain boundaries �K i (see Eq. (9)
is the main result of this section. It should be noted that M *

&(A){
M&(A, �*A)=�&

+=* M +
&(A) since �*A contains lower dimensional parts

�+A (+�*) of the surface. Equation (30) describes the separation of the
curvature measures M&(A, x) and its geometric support /*(A, x) which
can be used in Section 4 to determine exact second order moments of
M&(A) in terms of structure functions of A(*). The characteristic functions
/&(A, x) and the local Minkowski functionals M*(A, x)=S*&1�(*( d

*)) are
two complement quantities describing the morphology at a point x of the
boundary of a spatial structure. Whereas / focuses on the partition of the
surface into inter-sectional parts, the functionals W* describe the geometry
in terms of local curvatures.

Let us discuss some examples and elementary properties of the local
Minkowski functionals M *

&(A). For d-dimensional polyhedra P, for
instance, one finds M *

&(P)=M&(P) $*& , i.e., the functional M& is completely
located at the (d&&)-dimensional edges of P. In particular, the Euler
characteristic equals the sum of all 0-dimensional corner contributions.
Since M *

&(A) is located at the (d&*)-dimensional intersection of boun-
daries one finds according to Eq. (13) for the union of * grains Ki the rela-
tions (*>0)

M*
& \ .

*

i=1

K i+=(&1)*+1 M *
& \ ,

*

i=1

Ki +
(31)

M*
& \ .

*

i=1

K i+=M& \ .
*

i=1

Ki , ,
*

i=1

�Ki +=(&1)*+1 M& \ ,
*

i=1

Ki , ,
*

i=1

�Ki +
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where the sign (&1)*+1 follows from the additivity relation (3). Using the
kinematic formula (5), for instance, the integrals over the group of motions
G yields for *=& and *=&&1

`
&

i=2
|

G

dgi M &
& \ ,

&

i=1

giK+=&! M1(K )&

(32)

`
&

i=2
|

G

dgi M &
&+1 \ ,

&

i=1

giK+=\&+1
2 + &! M2(K ) M1(K )&&1

Finally, mean values of the local Minkowski functionals M *
& can be discussed

in the Boolean model of overlapping grains. Using the decomposition (30)
as well as the definitions (29) and Eq. (31) one obtains immediately the
coefficients

I� *
&= `

*

i=2
|

G

dgi M& \ ,
*

i=1

gi K, ,
*

i=1

g i �K+= `
*

i=2
| dgi M *

& \K ,
*

i=2

giK+ (33)

for the mean values (8) of the Minkowski functionals with

I� *
&=

�&

�t& \ :
d

:=0

M:(K, �K )
t:

:!+
*

} t=0

= :
&&*+1

&1 ,..., &*=1

& !
&1 ! } } } &* !

`
*

i=1

m&i
(K ) (34)

�*
i=1 &i=&

where the sum is restricted to values of &i which obey the sum rule
�*

i=1 &i=&.

Example 2.5. In particular, one finds I� 0
0=1, I� 1

& =m& , I� 2
2=2(m1)2,

I� 2
3=6m1 m2 , I� 3

3=6(m1)3. Thus, integrals of local Minkowski functionals
given in Eq. (33) can be evaluated by using the kinematical formula (5)
where terms containing M0(K, �K )=0 vanish. Therefore, the coefficient I� *

&

in the polynomial (8) equals the local Minkowski functional of the bound-
ary where * grains Ki intersect, averaged over translations and rotations
of Ki .

Remark. The coefficients for non-spherical convex grains K are
always larger than the coefficients for a d-dimensional sphere B(d ) of equal
volume m0(K ), i.e.,

I� +
&(K )�I� +

&(B(d ))�(m0(K )�m0(B(d )))*&&�d (35)
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This relation is directly related to the well-known isoperimetric inequali-
ties(13)

\ M0(K )
M0(B(d ))+

d&&

�\ M&(K )
M&(B(d ))+

d

,
M&(K )

M&(B(d ))
�

Md&1(K )
Md&1(B(d ))

(36)

for the Minkowski functionals of arbitrary convex grains K in d dimen-
sions. Such inequalities causes a liquid drop to relax into a spherical shape
which minimizes its free energy because of its minimal surface area.

For a finite number N of grains Ki in a box 0 with periodic boundary
conditions and volume |0| one obtains the canonical mean values

m0(N )=1&\1&
V

|0|+
N

(37)

m&(N )= :
&

*=1

(&1)*+1 \N
* +\1&

V
|0|+

N&* I� *
&

|0| *

Example 2.6. Using the additivity relation (3) and the kinematic
formula (5) one obtains the mean values

(M&(K1 _ K2))=2M&&
1

|0|
:
&

+=0 \
&
++ M+M&&+ (38)

of the Minkowski functionals for two grains Ki where the bracket denotes
an integration over translations and rotations of Ki . Applying the Eqs. (34)
and (37), |0| m&(N=2)=2(1&V�|0| ) I� 1

&&I� 2
& �|0|, one recovers the result

(38) with I� 1
&=M&(K ) and I� 2

&=�&&1
+=1 ( &

+) M+M&&+ .
Accordingly, using the decomposition (15) one obtains for the (d&*)-

dimensional volume of N grains the mean values

m*
0(N )=(/*(A, x))=\N

* +\1&
V

|0|+
N&* I� *

0

|0|* (39)

in the Boolean model with I� 0
0=1 and the averaged volume of the intersec-

tion of * boundaries

I� *
0 := `

*

i=1
| dgi /* \ .

*

i=1

g i K, x+= `
*

i=2
| dgi M *

0 \K .
*

i=2

giK+
=

(d&*+1) |d&*+1

(d+1) |d+1 \(d+1) |d+1

d|d
M 1

0(K )+
*

(40)

1356 Mecke



For example, the (d&1)-dimensional surface area is I� 1
0=dW1(K ), the mean

number of intersection points I� 2
0(K )=(2�?) U(K )2 (I� 3

0(K )=(?�8) S(K )3)
of two (three) grain boundaries in two (three) dimensions is given by the
circumference U(K ) (surface area S(K )) of the grains, respectively, and in
three dimensions the boundary length of two intersecting grains is I� 2

0(K )=
(?�2) S(K )2. Thus, one obtains for discs of radius R in two dimensions
I� 2

0(BR)=8?R2 and for spheres in three dimensions I� 3
0(BR)=8?4R6. Of

course, this explicit result could have been calculated directly by using
the determinant (21) but using the kinematic formula (5) is much more
convenient. In the thermodynamic limit N, 0 � �, \=N�|0| fixed one
obtains the grand-canonical average

m*
0(\)=(M *

0) gk= :
�

N=*

(\0)N

N!
e&\0m*

0(N, |)=
\*

*!
e&\VI� *

0 (41)

and for the mean values m*
&(N )=(M *

&(A, x)) of the local Minkowski
functionals

m*
&(N ) = (&1)1+* \N

* +\1&
V

|0|+
N&* I� *

&

|0|*

� m*
&(\)=(&1)1+* \*

*!
e&\V(K )I� *

& (42)

in accordance with m&(\)=�&
*=1 m*

&(\) given by Eq. (8).

3. STRUCTURE FUNCTIONS IN THE BOOLEAN MODEL

In the previous section local Minkowski functionals M *
&(A) have been

introduced in order to decompose the global functionals M& into terms
located on the (d&*)-dimensional intersection set A(*) of * grain surfaces.
In a last step structure functions S *1*2(x1 , x2) are defined for these geometric
locations so that second order moments of local functionals M *

&(A) can be
written as integrals over curvature-weighted structure functions M*1*2

&1&2
(x1 , x2)

(Section 4).
The expectation value that a point x is covered by a configurations

A=�N
i=1 Ki of the Boolean model is given by the density

S0(x)=(/(A & x)) =m0(N ) (43)
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Analogously, one can define the centered n-point correlation function

S0 } } } 0

n-times

(N; x1 ,..., xn)

=�`
n

i=1

(/(A & xi )&S 0(xi ))�
= :

n

l=0

(&1) l :
C l

n _\1&
V(K )

|0| +
n&l

\1&
V([xj ] j # C l

n)

|0| +&
N

(44)

that simultaneously all points xi are located in A. Here, C n
l denotes a com-

bination of l numbers out of [1,..., n] and

V([xj ] j=1,..., n)=|
R

dr V \ .
n

j=1

rKxj+ (45)

is the covered volume of grains centered at xj and averaged over all rota-
tions r of the grains Ki where all of them have the same orientation. In the
thermodynamic limit N, 0 � � with fixed density \=N�|0| one obtains
instead of the canonical function (44) the grand-canonical correlation
function

S0 } } } 0(\; [x i ])= :
n

l=0

(&1) l :
C l

n
e&(n&l ) \V(K )&\V([xj ]j # C l

n ) (46)

Instead of Eq. (44) for the covered region A one can also define correlation
functions for the (d&*)-dimensional intersection sets A(*), namely

S*(N; x)=(/*(A, x)) =m*
0(N )

(47)
S *1*2 } } } *n(N; x1 ,..., xn)=�`

n

i=1

[/*i (A, xi )&S*i (N; x i )]�
i.e., the expectation value that the points xi are located on A(*i ), respectively.

In contrast to the structure functions for A given by Eq. (44) it is not
possible to decompose the functions (47) for the intersection sets A(*)

straightforwardly since the characteristic functions /* do not obey the
simple multiplication rule (14) but the decomposition (15). Applying
Eq. (15) to the structure function (47) yields terms of the form

/2(K1 _ K2 , x1) } /1(K1 , x2) } (1&/(K2 & x2) (48)
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which have to be integrated over the motions of the grains Ki . Instead of
the kinematic formula as for mean values one has to use the differential
geometric factors (20) in combination with the symmetry relation (16), the
multiplication rules (14)�(18), and combinatorial factors due to permuta-
tions of the equal shaped grains Ki in Eq. (48).

Then, for *1�*2>0, *>0 the canonical correlation functions reads

S 00(N; x1 , x2)=\1&
V(x1 , x2)

|0| +
N

&\1&
V

|0|+
2N

S *0(N; x1 , x2)=\N
* +\1&

V
|0|+

2N&* I� *
0

|0| *

&\N
* +\1&

V(x1 , x2)
|0| +

N&* I *
0(x1 , x2)

|0|*

(49)

S *1*2(N; x1 , x2)=&\N
*1+\

N
*2+

I� *1
0 I� *2

0

|0|*1+*2 \1&
V

|0|+
2N&*1&*2

+ :
*2

l=0
\N

*1 +\
*1

l +\
N&*1

*2&l +
S *1*2

l (x1 , x2)
|0|*1+*2&l

_\1&
V(x1 , x2)

|0| +
N&*1&*2+l

with the geometric amplitudes

S &1&2
l (x1 , x2)=\ `

&1+&2&l

j=1
| dKj+ /&1 \ .

&1

j=1

Kj , x1+ /&2 \ .
&1+&2&l

j=&1&l+1

K j , x2+
_ `

&1+&2&l

j=&1+1

(1&/(Kj & x1)) `
&1&l

j=1

(1&/(K j & x2)) (50)

i.e., the constrained structure functions that l grains out of &1+&2&l are
linked to x1 and x2 . Equation (49) resembles the combinatorial features of
the correlation functions whereas the coefficients S &1&2

l (x1 , x2) given by
Eq. (50) describe the geometric properties of local configurations �&1+&2&l

j=1 K j

and do not depend on the density, i.e., the total number N of grains.

Remark. The structure function S*1 *2(N; x1 , x2){0 is not zero for
|x1&x2 |>2R because the difference between (1&(V�|0| ))2N and (1&(2V�
|0| ))N vanishes only in the thermodynamic limit N � �, |0|=N�\. For
convenience, the smallest distance 2R of two grains,

R := 1
2 Max[r, x][ |x| with rK0 & rKx {<] (51)
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is introduced where an overlap is not possible for any orientation r. In case
of spheres R equals the radius of the spheres. It is the largest distance
where one can find an orientation of the grains so that they overlap.

If no grain is fixed to both points xi , i.e., for l=0 the geometric coef-
ficients factorize,

S *1 *2
0 (x1 , x2)=I *1

0 (x1 , x2) I *2
0 (x1 , x2) (52)

with I 0
0(x1 , x2)=1, I 1

0=�R dr M1(rK� x1
, r �K� x1

�rK� x2
), and

I *
0(x1 , x2)=\ `

*

j=1
|

R

drj+ |
rj �K� x1

�rj K� x2

dyj 211(ny1
ny2

) } } } 2(*&1) 1(ny1
} } } ny*

)

(53)

For |x2&x1|>2R one obtains I *
0=(/*(�*

j=1 Kj , x i )) =I� *
0 , i.e., the mean

value of the (d&*)-dimensional volume of the intersection of * grain boun-
daries given by Eq. (40). For values l{0 the expression (49) cannot be
written as product of two factors I *i

0 . Nevertheless, one can simplify the
expression (50) by introducing the boundaries

Y (1)
j :=rj �K� x1

�r jK� x2
, Y (2)

j :=rj �K� x2
�rjK� x1

, Y (12)
j :=rj �K� x1

& rj �K� x2

(54)

and applying the decomposition rule (18) so that

S *1 *2
l (x1 , x2)=\ `

*1+*2&l

i=1
|

R

dri+ `
*1

j=*1&l+1
|

Y j
(12)

dyj

sin ,j

_ `
*1&l

j $=1
|

Y j $
(2)

dyj $ `
*1+*2&l

j"=*1+1
|

Y j "
(2)

dyj"

_211(n1
y1

n1
y2

) 221(n1
y1

n1
y2

n1
y3

) } } } 2(*1&1) 1(n1
y1

} } } n1
y*1

)

_211(n2
y*1

&l+1n2
y*1

&l+2) } } } 2(*2&1) 1(n2
y*1

&l+1 } } } n2
y*2

) (55)

where ,j is the angle between the normals n1
j and n2

j of K� x1
and K� x2

at yj .
The Jacobians 2 (2)

11 (ny1
ny2

) and 2 (3)
21 (n1

y1
n1

y2
n1

y3
) are given by Eqs. (21) and

(22), respectively. Thus, the geometric factors S *1*2
l (x1 , x2) in the structure

functions, Eq. (49), are averages of the volume elements 2 (d )
ij (rx) at inter-

section points of grains Ki which are explicitly given by Eqs. (20)�(22). The
advantage of the expression (55) instead of Eq. (50) is that it involves only
independent integrals over grain boundaries Yj without referring to com-
mon intersection points x1 and x2 as in Eq. (50).
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It should be noted that the functions S *1*2
l>0(x1 , x2)=0 vanishes for

|x2&x1|>2R in contrast to S *1*2
0 (x1 , x2). In particular, one finds the

following expressions where ny denotes the normal of K at y # �K. The vec-
tor n i

y is the normal of Kxi
at the intersection y # �Kx1

& Kx2
and ,(n1 , n2)

denotes the angle between the two normals ni . The definition of the
integration domains Yi are given by Eq. (54). Since our interest is focused
primarily on two and three-dimensional spatial structures we give here the
explicit expressions for *i�3:

S 11
1 =|

R

dr |
Y (12)

dy
1

sin ,(n1
yn2

y )

S 21
1 = `

2

i=1
|

R

dri |
Y 1

(12)
dy1 |

Y 2
(1)

dy2

sin ,(n1
y1

ny2
)

sin ,(n1
y1

n2
y1

)

S 22
1 = `

3

i=1
|

R

dri |
Y 1

(12)
dy1 |

Y 2
(1)

dy2 |
Y 3

(2)
dy3

sin ,(n1
y1

ny2
) sin ,(n2

y1
ny3

)

sin ,(n1
y1

n2
y1

)

S 22
2 = `

2

i=1
|

R

dri |
Y i

(12)
dyi

sin ,(n1
y1

n1
y2

) sin ,(n2
y1

n2
y2

)

sin ,(n1
y1

n2
y1

) sin ,(n1
y2

n2
y2

)

S 31
1 = `

3

i=1
|

R

dri |
Y 1

(12)
dy1 |

Y (1)
i>1

dyi

|(n1
y1

_ny2
) ny3

|

sin ,(n1
y1

n2
y1

)

S 32
1 = `

4

i=1
|

R

dri |
Y 1

(12)
dy1 |

Y (1)
i=2, 3

dy i (56)

_|
Y 4

(2)
dy4

|(n1
y1

_ny2
) ny3

| sin ,(n2
y1

ny4
)

sin ,(n1
y1

n2
y1

)

S 32
2 = `

3

i=1
|

R

dri |
Y (12)

i=2, 3

dyi |
Y 3

(1)
dy3

|(n1
y1

_n1
y2

) ny3
| sin ,(n2

y1
n2

y2
)

sin ,(n1
y1

n2
y1

) sin ,(n1
y2

n2
y2

)

S 33
1 = `

5

i=1
|

R

dri |
Y 1

(12)
dy1 |

Y (1)
i=1, 2

dy i |
Y (2)

j=4, 5

dyj

|(n1
y1

_ny2
) ny3

| |(n2
y1

_ny4
) ny5

|

sin ,(n1
y1

n2
y1

)

S 33
2 = `

4

i=1
|

R

dri |
Y (12)

i=1, 2

dyi |
Y 3

(1)
dy3 |

Y 4
(2)

dy4

|(n1
y1

_n1
y2

) ny3
| |(n2

y1
_n2

y2
) ny4

|

sin ,(n1
y1

n2
y1

) sin ,(n1
y2

n2
y2

)

S 33
3 = `

3

i=1
|

R

dri |
Y i

(12)
dyi

|(n1
y1

_n1
y2

) n1
y3

| |(n2
y1

_n2
y2

) n2
y3

|

sin ,(n1
y1

n2
y1

) sin ,(n1
y2

n2
y2

) sin ,(n1
y3

n2
y3

)
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The general expression Eq. (55) for the coefficients S *1*2
l (x1 , x2) is the

main result of this section since they determine the correlation functions,
Eq. (49), besides combinatorial factors. The main difficulty in evaluating
the coefficients resides in an useful parameterization of the boundaries
Y (1)

j (x1 , x2), Y (2)
j (x1 , x2) of a single grain K and their intersection Y (12)

j

(x1 , x2) which depend on the relative position of the grains. For discs and
spheres the parameterization is straightforward so that the integrals in
Eq. (56) can be performed analytically. For more complex shapes the
integrals over a single grain boundary �K can be calculated numerically
without much effort since the dimensions of the manifolds Yj are low.

Example 3.1. One obtains for discs BR of radius R in two dimen-
sions the geometric structure amplitudes

S *0
1 (x1 , x2)=I *

0

S 11
1 (x1 , x2)=

2
sin 8

=
2R

|x2&x1| - 1&(x2&x1)2�(2R)2

S 21
1 (x1 , x2)=S 11

1 R |
?+8

0
d, |sin(,)|=

2R
sin 8

(3&cos 8) (57)

S 22
1 (x1 , x2)=

2R2

sin 8
(3&cos 8)2

S 22
2 (x1 , x2)=2

sin2(?&8)
sin2 8

+8?R2$(x1&x2)=2+8?R2$(x1&x2)

with S *1*2
l>0=0 for |x2&x1|>2R. The opening angle 8 (0�8�?) at the

intersection point Y (12)=�Kx1
& �Kx2

of two discs is defined by sin(8�2)=s
and s=(|x1&x2 | )�(2R). The last expression S 22

2 (x1 , x2) contains a term
localized at x1=x2 , i.e., a $-distribution due to the intersection Y (12)=
�BR , in accordance with the general relations

| dx2 S 22
2 (x1 , x2)=| dg(M 2

0(K1 & gK2))2=4I/

(58)

S 22
2 (x1=x2)=| | dg dg$(/2(gK & g$K, x1))2=2I/$(x1&x2)

in two dimensions with I/=� dg /(K & gK )=2(W0(K )+W1(K )2�?)=4?R2.
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4. SECOND ORDER MOMENTS OF
MINKOWSKI FUNCTIONALS

The moments of the volume V(A)=M0(A) can be written as
integrals of the structure functions defined in Eq. (44),

m (gk)
0 } } } 0

n-times

(\)=
( (V(A)&(V(A)) )n)

|0|
=\ `

n

i=2
|

Rd
dx i+ S 0 } } } 0

n-times

(\; 0, x2 ,..., xn)

(59)

Here, the index (gk) indicates that these values are grand-canonical moments
averaged, with fluctuating particle numbers but fixed mean density \=
(N)�|0|. For fixed particle number N the canonical moments m(k)(\)
differ which is shown in the following section. Whenever not indicated, the
grand-canonical average is meant.

4.1. Curvature-Weighted Structure Functions

In order to calculate moments of Minkowski functional the correlation
functions S*1 } } } *n(N; x1 ,..., xn), Eq. (47), are weighted, i.e., multiplied with
the local Minkowski functionals,

M *1*2 } } } *n
&1&2 } } } &n

(N; x1 , x2 ,..., xn)=�`
n

i=1

[M&i
(A, x i ) /*i (A, xi )&M *i

&i
(N; xi )]�

(60)

and M *
&(N; x)=(M&(A, x) /*(A, xi ))=m*

&(N ) for homogeneous dis-
tributions of grains. The weighted correlation functions M [*i ]

[&i ](N; [xi ])
contains different types of morphological informations. Whereas the posi-
tion is given by xi , the indices *i describe the type of surface and &i the
local geometry given by the curvature S*&1 . There are two constraints on
the indices of the correlation functions given in Eq. (60): First, *i�&i

because of W&(A, x)=0 for &<* and x # �*A. Second, &i=0 if * i=0
because of W&(A, x)=0 ``almost sure'' for &�1 and x # A arbitrarily
chosen. Although /0(A, x)=1 for x # �&A one obtains for the average
S 0

&= for &�1.
W *

&(x) measures the probability that x is located on the partition �*A

weighted by the local curvature (geometry) W& . It should be noted that as
soon as an upper index occurs W *

&(x) is not a functional but a distribution
(in contrast to W&(x)), defined only in combination with an integral over
the position x.
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The second order moments of the Minkowski functionals, i.e., of
$M&(A)=M&(A)&(M&(A)) can now be written as integrated structure
functions

m&+(N )=
($M&(A) $M+(A))

|0|
= :

&

*1=1

:
+

*1=1
|

Rd
dx M *1*2

&+ (N; 0, x) (61)

where the sum runs over contributions stemming from (d&*i )-dimensional
intersections A(*i ). Analogous to Eq. (49), one finds for the curvature-
weighted structure functions

M 00
00(N; x1 , x2)=\1&

V(x1 , x2)
|0| +

N

&\1&
V

|0|+
2N

M *0
&0(N; x1 , x2)=(&1)*+1 \N

* +\\1&
V

|0|+
2N&* I� *

&

|0|*

&\1&
V(x1 , x2)

|0| +
N&* I *

&(x1 , x2)
|0| * +

(62)

M *1*2
&1 &2

(N; x1 , x2)=(&1)*1+*2 :
*2

l=0
\N

*1+\
*1

l +\
N&*1

*2&l +
_}

M *1*2
&1&2 ; l

|0|*1+*2&l \1&
V(x1 , x2)

|0| +
N&*1&*2+l

}
&(&1)*1+*2 \N

*1+\
N
*2+

I� *1
&1

I� *2
&2

|0|*1+*2 \1&
V

|0|+
2N&*1&*2

with (*i>0)

M*1*2
&1&2 ; l (x1 , x2)=S *1*2

l _{M&1 \ ,
*1

j=1

rjKyj
, x1+ M&2 \ ,

*1+*2&l

j=*1&l+1

rjKyj
, x2 +=

=(&1)*1+*2 S *1*2
l

_{M&1 \ .
*1

j=1

rj Kyj
, x1+ M&2 \ .

*1+*2&l

j=*1&l+1

rjKyj
, x2+= (63)

where S *1*2
l denotes the expression given in Eq. (55), so that Eq. (63) is

actually an integration of M&1
([rj , y j ]) M&2

([rj , y j ]) over the rotations rj

and locations yj of the *1+*2&l grains Ki using the volume elements 2 (d )
ij
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given in Eq. (20), i.e., the Jacobians as weights for the kinematic densities.
The local Minkowski functionals M&(K, x i ) are defined by Eq. (25) and
depend only on the coordinates yi but not on xi due to the motion
invariance of Minkowski functionals. Eq. (62) resembles the same structure
than Eq. (37) for the mean values m&(N ) but with distance-dependent
geometric amplitudes M *1*2

&1&2 ; l instead of constant coefficients I� *
& .

Remark 1. Note, that M *1*2
&1&2 ; l>0(N; x1 , x2)=0 vanishes for distan-

ces |x2&x1|>2R larger than the contact distance 2R given by Eq. (51).

Remark 2. The integration S *1*2
l in Eq. (63) corresponds to the

average ( } ) over positions and orientations of *1+*2&l grains.

This interpretation of Eq. (63) is more convenient for evaluating the
integrals for sticks in Subsection 4.3, for instance.

M *1*2
&1&2 ; l (x1 , x2)=�M&1 \ ,

*1

i=1

�Ki , x1+ M&1 \ ,
*1+*2&l

i=*1&l+1

�Ki , x2+� (64)

The curvature-weighted functionals M *1*2
&1&2 ; 0 can be decomposed into

the product of two structure functions (*i>&i )

M *1*2
&1&2; 0(x1 , x2)=I *1

&1
(x1 , x2) I *2

&2
(x2 , x1) (65)

with (*>0)

I *
&(x1 , x2)= `

*

j=1
|

R

dr j |
rj �K� x1

�rj K� x2

dyj 211(ny1
ny2

) } } }

_2(*&1) 1(ny1
} } } ny*

) M& \ ,
*

j=1

rj Kyj
, x1+ (66)

and I 0
&>0=0, I 0

0=1. In general, one finds

I 1
&(x1 , x2)=|

R

dr |
r �K� x1

�rK� x2

dy M&(rKy , x1)=|
R

dr M&(rKx1
, +2Kx1

�rKx2
)

(67)

Remark 1. In the limit |x2&x1|>2R one obtains I *
&(x1 , x2)=

(M *
&(�*

j=1 Kj , xi )) =I� *
& , i.e., the averaged local Minkowski functionals

given by Eq. (34).

Remark 2. Although it is possible to derive explicit expressions for
second order moments of Minkowski functionals (see Eqs. (61) and (62)),
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the actual evaluation is quite difficult for non-spherical shapes. In order to
study the dependence on shape and orientation of the grains similar
general results as for the mean values (8) or at least reliable approxima-
tions would be useful for many applications in statistical physics.

4.2. Canonical Versus Grand-Canonical Ensembles

Averages ( } )N are calculated in the Boolean model first at fixed par-
ticle numbers N. Using a Poisson distribution

PN(\)=
(\0)N

N !
e&\0 (68)

of N grains in the volume 0 with density \ one may define a grand-canoni-
cal average at fixed density (intensity) but fluctuating particle number N by

( } )\= :
�

N=0

PN(\)( } ) N (69)

In the Boolean model mean values m&(\) of morphological measures
obtained at fixed particle number (canonical ensemble) or at fixed intensity
(grand-canonical ensemble) become identical in the thermodynamic limit
N, 0 � �, \=N�|0|. This is not the case for variances or higher order
moments. Note, that for the definition of grand-canonical averages at fixed
density \ no thermodynamic limit is needed.

It is well known that the difference $C=Cp&CV>0 between the
specific heat at constant pressure Cp and at constant volume Cv , i.e., the
difference in the second order moment of the energy is given by the ther-
modynamic relation $C=T (�p��T )V (�V��T )p . In the following a similar
expression is derived for the difference $m&1&2

(\)=m (gk)
&1&2

&m (k)
&1&2

of the
moments at constant grain number (canonical ensemble, Bernoulli dis-
tribution) and at constant density but fluctuating number (grand-canonical
ensemble, Poisson distribution) in the Boolean model.

Using the canonical correlation function S00(x), x=x2&x1 given by
Eq. (49) one obtains for the canonical moments of the volume (\=N�|0|,
V(K )=M0(K )) in the thermodynamic limit N, 0 � �

m (k)
00 (N )=|

0
dx S00(N, x)=|

0
dx \S 00(\; x)&

1
|0|

$S 00(\; x)+O( |0|&2)+
t

N(N&1)
2 |0|2 |

0
dx V(K & Kx )2+O \\3,

1
|0|+ (70)
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with the grand-canonical structure function and its finite-volume distortion
(x=x2&x1) at constant density \ (i.e., N(=)=\ |0| is an function of
==|0|&1 in an expansion of Eq. (49)):

S00(\; x)=e&\V(x1 , x2)&e&2\V

(71)
$S00(\; x)= 1

2 \V(x1 , x2)2 e&\V(x1 , x2)&\V 2e&2\V

Using the Poisson distribution PN(\) of N grains in the volume 0 with
density \, the relation (69) for the averages, and Eq. (49) one obtains the
grand-canonical moments

m (gk)
00 (\)= :

�

N=0

PN(V 2) N&\ :
�

N=0

PN(V ) N +
2

=|
0

dx S00(\; x)

t\V 2&2\2V 3+
\2

2 |
0

dx V(K & Kx )2+O(\3) (72)

It should be noted that m (gk)
00 (\){m (k)

00 (\) defined by m (k)
00 (\)=lim m (k)

00 (N )
for N, 0 � �, \=N�|0| fixed. The difference $m00(\)=m (gk)

00 (\)&m (k)
00 (\)

of the canonical and grand-canonical moments are then given by

$m00(\)= lim
N, 0 � � |

dx
|0|

$S 00(x)= lim
|x| � �

$S 00(x)

=\V 2e&2\V
r\V 2&2\2V 3+O((\V )3) (73)

Although the difference $S00�0 in the canonical and grand-canonical
correlation function S 00(x) vanishes in the thermodynamic limit, integrals
of them differ. The grand-canonical function is equal to zero for distance
|x|>2R larger than the diameter whereas the canonical function is
negative. Although for fixed distance |x|>2R the value g(k)(x)t1�|0|
vanishes an integral over all distances larger than the diameter, i.e., over a
volume t |0| remains finite. Generally, one finds for the difference of the
second order moments

$m&+(\)=m (gk)
&+ (\)&m (k)

&+ (\)= lim
N, 0 � � |

dx
|0|

$M&+(x) (74)
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where the differences in the structure function in the thermodynamical limit
is given by

S *1*2(N ) � S*1*2(\)&
1

|0|
$S*1*2(\)+O( |0| &2)

(75)

M *1*2
&1&2

(N ) � M *1*2
&1 &2

(\)&
1

|0|
$M *1*2

&1&2
+O( |0| &2)

with (see Eqs. (39), (42), (49), and (62))

M *
&(\)=(&1)*+1 \*

*!
e&\VI� *

&

M 00
00(\)=e&\V(x1 , x2)&e&2\V

M *0
&0(\)=(&1)*+1 \*

*!
(I� *

& e&2\V&I *
& e&\V(x1 , x2))

M *1*2
&1&2

(\)=(&1)*1+*2 e&\V(x1 , x2) :
*2

l=0

\*1+*2&l

l! (*1&l )! (*2&l )!
M *1*2

&1&2; l&M *1
&1

M *2
&2

$M *
&(\)=(&1)$0*

\2V 2&2\*V+*(*&1)
2\

M *
&(\)

$M *1 *2
&1&2

(\)=(&1)*1+*2 e&\V(x1 , x2) :
*2

l=0

\*1+*2&l

l ! (*1&l )! (*2&l )!
$M *1*2

&1&2 ; l (76)

&$M *1
&1

M *2
&2

&M *1
&1

$M *2
&2

$M *1*2
&1&2 ; l (\)=(&1)$0*1

+$0*2
\(\V(x1 , x2))2&2\(*1+*2&l ) V(x1 , x2)

+(*1+*2&l )(*1+*2&l&1) +
2\

_M*1*2
&1&2 ; l (\)

and ($) S *=(&1)*+1 M *
0 , ($) S *0=(&1)*+1 M *0

00 , ($) S *1*2=(&1)*1+*2

M*1*2
00 . In the limit |x2&x1| � � only the term l=0 of $M *1*2

&1&2; l does not
vanish and one obtains

$M *1*2
&1&2

=(&1)$0*1
+$0*2

\*1+*2

*1 !*2 !
e&2\VI� *1

&1
I� *2

&2 \\V 2&(*1+*2) V+
*1*2

\ + (77)
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so that using Eq. (74) the difference of the moments reads

$m&1&2
(\)= :

&1

*1=1

:
&2

*2=1

$M *1 *2
&1 &2

=\
�m&1

(\)

�\

�m&2
(\)

�\
(78)

Thus, the difference of canonical and grand-canonical moments is given
solely by derivatives of their mean values, Eq. (8). The relation (78) can
immediately be applied to the specific heat difference C+&CN (Joule�
Thomson effect) in the Widom�Rowlinson model and the morphological
model(19) discussed in Section 5.

4.3. Examples of Second Order Moments

The explicit expressions (61)�(63) for the moments of Minkowski
functionals in the Boolean model are general and applicable for arbitrary
shapes. Of particular interest are d-dimensional spheres since it is the most
often used and most convenient shape. In order to test the general formula
(62) and to study the dependence on shape and orientation we illustrate
the results also by random distributions of sticks in two dimensions.

Example 1: Two Discs, N=2. Using the additivity relation (3),
the kinematic formula (5), and the relation /(K )2=/(K )=1 for a convex
grain K one obtains the mean value and the second order moment

(/(K1 _ K2))=2&
4?R2

|0|
(79)

($/(K1 _ K2)2)=
4?R2

|0|
&

16?2R4

|0|2

of the Euler characteristic for two discs of radius R. Applying Eq. (61) and
Eq. (62) one obtains

|0|2 M 11
&1&2

=&4M&1
M&2 \1&

V
|0|++2M 11

&1 &2 ; 0+2M 11
&1 &2 ; 1( |0|&V(x1 , x2))

|0|2 M 21
2&2

=2
I� 2

2M&2

|0| \1&
V

|0|+&2M 21
2&2; 1 (80)

|0|2 M 22
22=&\ I� 2

2

|0|+
2

+M 22
22; 2
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so that one recovers the result (79) for two discs of radius R with I� 2
2=2R2,

V=R2(?+8+sin 8), sin(8�2)=(|x1&x2 | )�(2R), and

M 11
22; 0=(?+8)2�(4?4)

M 11
22; 1=

1
2?4R2 sin 8

(81)

M 21
22; 1=

2?&sin 8&(?&8) cos 8
2?4 sin 8

M 22
22; 2=

(?&8)2

2?4 +R2 \1
?

&
4
?3+ $(x1&x2)

(see Eq. (97)). Note, that the integration � d 2x2=2?R2 �?
0 d8 sin 8 is

restricted to values x2<2R only for the terms M 11
22; 1 , M 21

22; 1 , and M 22
22; 2 ,

whereas M 11
22; 0 and the constants M& are integrated over 0.

Example 2: N Sticks in One Dimension. For a distribution of
Poisson distributed sticks of length r in one spatial dimension the expres-
sions (61)�(55) reduce to

S00=e&\[2r&3(r&|x1&x2 | )(r&|x1&x2 | )]&e&2r\

S10=&(\S 00&\e&2r\)�2 (82)

S11=(\S00&3\e&2r\+e&2r\ $(r&|x1&x2 | )+2e&r\$( |x1&x2 | )) \�4

so that one finds the second order moments

m00(\)=
2
\

(e&\r&(1+\r) e&2\r)

m10(\)= &(e&\r&(1+2\r) e&2\r)�2 (83)

m11(\)=\(e&\r&2\re&2\r)�4

plotted in Fig. 2.

Example 3: N Sticks in Two Dimensions. For sticks of length
L one finds W0=0, W1=L, W2=?, and therefore M0=0, M1=L�?,
M2=1�?. Using the additivity relation (3) one obtains the mean values
m0(N )=0, m1(N )=NM1 �|0|, and

m2(N )=
N

? |0|
&

N(N&1)
2? |0|

P2 �
\
?

&\L\
? +

2

(84)
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Fig. 2. (a) Second order measures w&+(\) of the one-dimensional volume (&=0) and of the
Euler characteristic (&=1) for Poisson distributed sticks of length r in one dimension as func-
tion of the density \r (see Eq. (83)). (b) Grand-canonical second order moments m22(\) of the
curvature for sticks of length L and discs of radius R in two dimensions. The zero \0 of the
Euler characteristic m2(\) and the length m1(\) of the boundary length is used to normalize
the density and the curvature, respectively. Note, that for \=\0 the variances are almost
equal.

where P2=� (dS$�|0| ) /(S & S$)=2L2�? |0| denotes the probability that
two sticks intersect. The second order moments m&+(N )=0 vanish identical,
except for

m22(N )=
N(N&1)
2?2 |0|

P2&
N(N&1)

2 |0| \ 2L2

?2 |0|+
2

(85)

In the thermodynamic limit N, |0| � � one obtains the canonical moment
m(k)

22 (\)=\2(L2�?3). The grand-canonical moment is given by Eq. (78),
i.e., m (gk)

22 (\)=(\�?2)+(L2\2�?3). Now, the expression (66) can be applied
yielding the integrals I 1

2=1�?, I 2
2=2L2�?2 for sticks. Therefore, one finds

I� 1
2=1�?, I� 2

2=2L2�?2 in accordance with Eq. (33). Using the general
result (62),

M 11
22=&

N
|0| 2

1
?2+

N
|0|

M 11
22; 1

M 21
22=

N(N&1)
|0| 3

2L2

?3 &
N(N&1)

|0| 2 M 21
22; 1 (86)

M 22
22=&

N(N&1)(4N&6)
|0| 4

L4

?4+
N(N&1)(N&2)

|0| 3 M 22
22; 1+

N(N&1)
2 |0| 2 M 22

22; 2
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with

M 11
22; 1=

$(2)(x1&x2)
2?2 +

$ (1)( |x1&x2 |&L)
4?3L

(87)

M 21
22; 1=

L
?4 |x1&x2 |

, M 22
22; 1=

2L3

?5 |x1&x2 |
, M 22

22; 2=
2L2

?3 $(x1&x2)

one recovers Eq. (85),

m22(N )=|
0

dx2 M 22
22(N, x1 , x2)=

N(N&1)
|0| 2

L2

?3 &
N(N&1)

|0|3

2L4

?4 (88)

Here, the expression

M2(rSy , x)=
$( |x&y|&L)

2? |x&y|
$(8)+

1
2?

$(x&y)

=
$( |x&y$|&L�2)

2? |x&y$|
($(8)+$(8&?)) (89)

for the local Minkowski functionals of a stick Sy of length L has been used
where y (y$) denotes the position of one end point (the midpoint) and 8
the angle between x&y and the direction of the stick axes (orientation
r=8). One recovers

M2(S)=| M2(rSy , x) dx=
1
?

=| M2(rSy , x) dS

=
1

2?
+

1
2? |

�

0
dr r |

2?

0
d8

$(r&L)
r

$(8)

and with

M2(�S & �S$, x)=$(x&y) 2 \ ,
2?2+

?&,
2?2 + (90)

the integral

I 2
2=(M2(�S & �S$, x)) =

2L2

?2 |
?

0

d,
?

, sin ,=
2L2

?2
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where y denotes the intersection point of the two sticks and , the enclosed
angle. Note the relation $(x&y)=($( |x&y| )�|x| ) $(8) if one transform to
spherical coordinates y=(|y|, 8) where 8=0 denotes the direction of x.

Example 4: N Discs in Two Dimensions. The volume of two
overlapping spheres of radius R and distance r in d dimensions is given by

V(r)=2 } |dRd&|d&1 |
2R

r \R2&\x
2+

2

+
(d&1)�2

dx (91)

and for discs in two dimensions

V(x1 , x2)=V \1+
2
?

arc sin(s)+
2
?

s - 1&s2+ (92)

with V=?R2 and s=(|x1&x2 | )�(2R). The boundary length of a disc which
is not covered by another disc at distance r reads F(x1 , x2)=R(?+
2 arc sin(s)) and the opening angle 8 at the intersection point �Kx1

& �Kx2

of two discs is given by sin(8�2)=s (0�8�?). Often an angle 3 is
defined in the literature on overlapping spheres by cos 3=|x1&x2 |�(2R),
0�3�?�2, and therefore, 8=?&23. Then, one obtains for an ensemble
of discs of radius R and density \ in two dimensions the structure functions

I 1
0=R \?+2 arc sin

|x2&x1|
2R +=R(?+8)

(93)

I 2
0=R2 ||

?+8

0
d, d,$ |sin(,&,$)|=2R2(?+38&sin 8)

=2R2(4?&63&sin 23 )

with I 1
0=I� 1

0=2?R, I 2
0=I� 2

0=8?R2 for |x2&x1|>2R and

I 1
*=R2&* ?+8

2?*

(94)

I 2
2=

R2

2?2 ||
?+8

0
d, d,$ |$,� | |sin($,� )|

=
R2

2?2 (4?8+4+4 cos 8&2(?&8) sin 8)

=2
R2

?2 (?2&2?3+1&cos 23&3 sin 23)
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with $,� =,� &,� $ and

,� ={,,
2?&,,

,�?
,>?

(95)

In the limit |x2&x1|>2R one finds I 1
1(x1 , x2)=I� 1

1=R, I 1
2(x1 , x2)=

I� 1
2=1�?, and I 2

2(x1 , x2)=I� 2
2=2R2. The local Minkowski functionals

defined by Eq. (23) read (i, *=1, 2)

M*(Ky , xi )=R1&*�(2?*)
(96)

M2(Ky1
& Ky2

, xi )=
1
?2 arc sin \ |y2&y1|

2R +
yielding the constrained structure functions (see Eq. (55) and (63))

M 11
&+; 1(x1 , x2)=

R2&&&+

2?&++ sin 8

M 21
2&; 1(x1 , x2)=

R2&&

2?2+& sin 8 |
?+8

0
d, |,� | |sin(,� )|

=
R2&&

2?2+& sin 8
(2?&sin 8&(?&8) cos 8)

=
R2&&

4?2+& sin 3 cos 3
(2?&sin 23+23 cos 23 ) (97)

M 22
22; 1(x1 , x2)=

R2

2?4 sin 8 \|
?+8

0
d, |,| |sin(,)|+

2

=
R2

2?4 sin 8
(2?&sin 8&(?&8) cos 8)2

M 22
22; 2(x1 , x2)=

(?&8)2

2?4 +R2 \1
?

&
4
?3+ $(x1&x2)

with S *1 *2
l>0=0 for |x2&x1|>2R. The last expression contains a term

localized at x1=x2 , i.e., proportional to a $-distribution. The Euler charac-
teristic contains a term proportional to a sum over all uncovered points
where the boundaries of two discs intersect. Therefore, the second order
moment of / contains a sum of the squared local Euler characteristic at
these points. This contribution can be written as a single integral over
x1 or, alternatively, as a double integral over a structure function which
contains a delta distribution.
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Remark. Note, that in contrast to I 2
2 and M 21

2&; 1 the intgrals

|
?+8

0
d, |,| |sin(,)|=2?+sin 8&(?+8) cos 8

(98)

||
?+8

0
d, d,$ |,&,$| |sin(,&,$)|=4?8+12&4 cos 8&2(?+8) sin 8

where ,� is replaced by , do not give the correct results, Eqs. (94) and (97).
With the explicit expressions (57) and (97) one finds for the structure

functions

S10(x1 , x2)=&R\(?+8) e&\V(x1 , x2)+2?R\e&2\V

S20(x1 , x2)=&
1
2

\2e&\V(x1 , x2)I 2
0+I� 2

0

\2

2
e&2\V

=&
(R\)2

2
(2?+68&2 sin 8) e&\V(x1 , x2)+4?R2\2e&2\V

(99)
S11(x1 , x2)=((I 1

0\)2+S 11
1 \) e&\V(x1 , x2)&(I� 1

0\)2 e&2\V

S21(x1 , x2)=\I 2
0I 1

0

\3

2
+S 21

1 \2+ e&\V(x1 , x2)&
1
2

I� 1
0 I� 2

0\3e&2\V

S22(x1 , x2)=\(I 2
0)2 \4

4
+S 22

1 \3+S 22
2

\2

2 + e&\V(x1 , x2)&
1
4

(I� 2
0\2)2 e&2\V

and for the Minkowski functions

M10
&0(x1 , x2)=S10�(2?&R&&1)

=R2&&?1&&\e&2\V&R2&& ?+8
2?& \e&\V(x1 , x2)

M 20
20(x1 , x2)=I 2

2

\2

2
e&\V(x1 , x2)&I� 2

2

\2

2
e&2\V

=
\2R2

4?2 e&\V(x1 , x2)(4?8+4+4 cos 8&2(?&8) sin 8)

&R2\2e&2\V
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M 11
&+(x1 , x2)=(I 1

& I 1
+\2+M 11

&+; 1 \) e&\V(x1 , x2)&I� 1
& I� 1

+ \2e&2\V

=
R2\

4(?R)&++ e&\V(x1 , x2) \\R2(?+8)2+
2

sin 8+&
(?R2\)2

(?R)&++ e&2\V

M21
2+(x1 , x2)= &\I 2

2I 1
+

\3

2
+M 21

2+; 1\2+ e&\V(x1 , x2)+I� 2
2I� 1

+

\3

2
e&2\V

=(?R)1&+ (\R)3 e&2\V&
R2&+\2

2?2++ e&\V(x1 , x2)

_\2?&sin 8&(?&8) cos 8
sin 8

+\R2(?+8) \?8+1+cos 8&
?&8

2
sin 8++

M 22
22(x1 , x2)=\(I 2

2)2 \4

4
+M 22

22; 1 \3+M 22
22, 2

\2

2 + e&\V(x1 , x2)&\I� 2
2

\2

2 +
2

e&2\V

=\R\
? +

4

e&\V(x1 , x2) \?8+1+cos 8&
?&8

2
sin 8+

2

+\3 R2

2?4 sin 8
e&\V(x1 , x2)(2?&sin 8&(?&8) cos 8)2

+\2 \?&8
2?2 +

2

e&\V(x1 , x2)&(R\)4 e&2\V

+
1
2

\2R2 \1
?

&
4
?3+ e&\V $((x1&x2) (100)

In Fig. 3 the exact grand-canonical second order moments m&+(\) of the
Minkowski measures are shown for discs in two dimensions (see Eq. (61),
(74) and the normalization Eq. (2)). It should be noted that the variances
for the Euler-characteristic w22 are large compared to the area and bound-
ary length which are similar to the second order moments w00 , w01 and w11

in one dimension shown in Fig. 2. The second order moment of the Euler-
characteristic w22 exhibit a maximum at a density close to the zero
m0 \0=1 with w2(\0)=0.
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Fig. 3. Grand-canonical second order measures w&+(\) for the area F (&=0), perimeter U
(&=1), and Euler characteristic / (&=2) of Poisson distributed discs of radius R (m0=?R2)
in two dimensions as function of the density ?R2\. It should be noted that the functional form
of the variances becomes more complex with increasing index &. The boundary length w11

exhibit two fluctuation maxima and the Euler characteristic shows a single (large) maxima but
additionally two shoulders.

5. APPLICATION: MORPHOLOGICAL THERMODYNAMICS

Homogeneous spatial domains of phases on a mesoscopic scale are a
characteristic feature of many composite media such as porous materials or
complex fluids shown in Fig. 1. The spatial structure of such composite
media may be described by randomly distributed, overlapping spheres, i.e.,
by configurations of a germ grain model (see Fig. 1). In contrast to the
Boolean model used in stochastic geometry it is necessary for physical
applications to introduce interactions between the grains in order to cap-
ture correlations of the particle. Therefore, a statistical theory should
include morphological descriptors to characterize size, shape and connec-
tivity of the aggregating mesophases shown in Fig. 1, for instance.

The Widom�Rowlinson model is an important example of such an
interacting model of stochastic geometries used mainly in the statistical
physics of fluids where the interaction is given by the volume of overlap-
ping spheres.(19) A general extension of this model rest on the Minkowski
functionals of the overlapped region in space, i.e., on surface tension and
curvature energies additionally to the volume of the spheres.(5�7, 12)

Such a morphological thermodynamics may be outlined as follows:
Each configuration of component (I) is assumed to be the union of mutually
penetrable convex grains AN=�N

i=1 giK. embedded in the host component
(II). The form of the grains is otherwise arbitrary; they may be balls, flat
discs, or thin sticks. The Boltzmann weights are specified by the Hamiltonian

H(AN)= :
d

&=0

h&M& \ .
N

i=1

gi Ki + (101)
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which is a linear combination of Minkowski functionals on the configura-
tion space of the grains. It should be emphasized that the Hamiltonian
(Eq. (101)) constitutes the most general model for composite media assum-
ing additivity of the energy of the homogeneous, mesoscopic components.
The configurational partition function is taken to be

ZN(T, V )=
1

N ! 4Nd | exp {&;H \ .
N

i=1

g iK+= `
N

j=1

dgj (102)

The integral denotes averages over the motions of the grains with dg being
the invariant Haar measure on the group of motion. The length 4 is a scale
of resolution for the translational degrees of freedom of the grains which
are restricted to a cube of volume V. Given the partition function ZN(T, D)
of the spatial configurations A & D in a domain D (volume V=|D| ) at
fixed particle number N and temperature temperature T, the free energy
equals the logarithm F(T, N, D)=&kBT log ZN(T, D). Thermodynamic
potentials are related by Legendre transformations so that the grand
canonical potential 0(T, +, D)=F&+N=&kBT log 5(T, +, D) is given by
the grand-canonical partition sum 5(T, +, V )=��

N=0 e ;+NZN(T, V ). The
internal energy, i.e., the expectation value of the energy (101),

U(N, T, D)=
�;F
�; }NV

=(H) TNV= :
d

&=0

h&M� &(N, T, V ) (103)

is given by the mean values M� &(N, T, V ) of the Minkowski functionals in
the Gibbsian ensemble at constant particle number N. In the thermo-
dynamic limit one obtains

f (T, \)= lim
N, V � �

1
V

F(T, N, V )=kBT (\ log \&\)&kBT |
\

0
d\$ log z(T, \$)

(104)

with \=N�V and the fugacity z(T, \)=\ZN+1 �ZN . Then, the chemical
potential

+(T, \)=
�F
�N }T =kBT log \&kBT log z(T, \) (105)

and the pressure

p=&
�F
�V }T =\

�f (T, \)
\

& f (T, \)=kB T\&kBT |
\

0
d\$

\$
z(T, \$)

�z(T, \$)
�\$

(106)
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can be expressed in terms of the fugacity z(T, \) which is the generating
functional for the cumulants of the geometric measures in a Gibbsian
ensemble. Expanding in powers of the inverse temperature ;=1�(kBT ) and
using the kinematic formulae (5) for the average over the position and
orientation of identical grains K in a homogeneous and isotropic ensemble
one obtains the explicit expression

z(T, \)=1+ :
d

&=0

;h& :
&

+=0
\ &

++ m+(K ) m&&&(\)+O(;2) (107)

The intensities m&(\) do not depend on the temperature and can be
calculated within the Boolean model (see Eq. (8)).

The second derivatives of the free energy, namely the specific heat

CN=T
�S
�T }NV

=&T
�2F(T, N, V )

�T 2 }NV
=

( (2H)2) k

kB T 2

=
V

kBT 2 :
d

&, +=0

h&h+m (k)
&+ (\, T ) (108)

is given by the second order moment of the Hamiltonian (101), i.e., by the
the second order moments of the Minkowski measures. Here, the index (k)
refers to a canonical ensemble where the average is performed at constant
particle number N and temperature T. The specific heat at constant chemi-
cal potential +,

C+=&T
�20
�T 2 }V

=
+(T, \)2

kBT 2 ( (2N )2) gk+
( (2H)2) gk

kBT 2 &
2+(T, \)

kB T 2 (2N 2H)gk (109)

is related to the second order moments

( (2N )2) gk=&
�2;0

�(;+)2 }V =kBT
�N
�+ }TV

=
Nz(T, \)

z(T, \)&\(�z(T, \)��\)
(110)

( (2H)2) gk=( (2N )2)gk \� log z(T, \)
�; +

2

+( (2H)2) k (111)
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Using the thermodynamic relation

C+=T
�S
�T } +V

=CN+T \�+(T, N, V )
�T }NV +

2

<�+(T, N, V )
�N }TV

(112)

between the specific heats at constant chemical potential C+ and constant
particle number CN one obtains

C+&CN=
NkBz(T, \)

z(T, \)&\(�z(T, \)��\) \;++;
� log z(T, \)

�; +
2

(113)

and finally the relation

m (gk)
&+ (\)&m (k)

&+ (\)=\
�m&(\)

�\
�m+(\)

�\
+O(;2) (114)

for the grand-canonical and canonical second order moments of the
Minkowski measures. Thus, a relation has been derived between the
moments of morphological measures which is based only on thermo-
dynamic arguments. Of course, it remains to calculate m&+(N, V ) and
M� &(N, V ) in a canonical ensemble which has been done in the previous
sections for the Boolean model of overlapping grains.
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